domingo, 9 de octubre de 2016

MICROCONTROLADOR


1.    CONTENIDO
· Definición
Un microcontrolador (abreviado μC, UC o MCU) es un circuito integrado programable, capaz de ejecutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales cumplen una tarea específica. Un microcontrolador incluye en su interior las tres principales unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada/salida.
Algunos microcontroladores pueden utilizar palabras de cuatro bits y funcionan a velocidad de reloj con frecuencias tan bajas como 4 kHz, con un consumo de baja potencia (mW o microvatios). Por lo general, tendrá la capacidad de mantenerse a la espera de un evento como pulsar un botón o de otra interrupción; así, el consumo de energía durante el estado de reposo (reloj de la CPU y los periféricos de la mayoría) puede ser sólo de nanovatios, lo que hace que muchos de ellos sean muy adecuados para aplicaciones con batería de larga duración. Otros microcontroladores pueden servir para roles de rendimiento crítico, donde sea necesario actuar más como un procesador digital de señal (DSP), con velocidades de reloj y consumo de energía más altos.
Cuando es fabricado el microcontrolador, no contiene datos en la memoria ROM. Para que pueda controlar algún proceso es necesario generar o crear y luego grabar en la  EEPROM o equivalente del microcontrolador algún programa, el cual puede ser escrito en lenguaje ensamblador u otro lenguaje para microcontroladores; sin embargo, para que el programa pueda ser grabado en la memoria del microcontrolador, debe ser codificado en sistema numérico hexadecimal que es finalmente el sistema que hace trabajar al microcontrolador cuando éste es alimentado con el voltaje adecuado y asociado a dispositivos analógicos y discretos para su funcionamiento.
· Características

Los microcontroladores están diseñados para reducir el costo económico y el consumo de energía de un sistema en particular. Por eso el tamaño de la unidad central de procesamiento, la cantidad de memoria y los periféricos incluidos dependerán de la aplicación. El control de un electrodoméstico sencillo como una batidora utilizará un procesador muy pequeño (4 u 8 bits) porque sustituirá a un autómata finito. En cambio, un reproductor de música y/o vídeo digital (MP3 o MP4) requerirá de un procesador de 32 bits o de 64 bits y de uno o más códecs de señal digital (audio y/o vídeo). El control de un sistema de frenos ABS (Antilock Brake System) se basa normalmente en un microcontrolador de 16 bits, al igual que el sistema de control electrónico del motor en un automóvil.
Los microcontroladores representan la inmensa mayoría de los chips de computadoras vendidos, sobre un 50% son controladores "simples" y el restante corresponde a DSP más especializados. Mientras se pueden tener uno o dos microprocesadores de propósito general en casa (Ud. está usando uno para esto), usted tiene distribuidos seguramente entre los electrodomésticos de su hogar una o dos docenas de microcontroladores. Pueden encontrarse en casi cualquier dispositivo electrónico como automóviles, lavadoras, hornos microondas, teléfonos, etc.
Un microcontrolador difiere de una unidad central de procesamiento normal, debido a que es más fácil convertirla en una computadora en funcionamiento, con un mínimo de circuitos integrados externos de apoyo. La idea es que el circuito integrado se coloque en el dispositivo, enganchado a la fuente de energía y de información que necesite, y eso es todo. Un microprocesador tradicional no le permitirá hacer esto, ya que espera que todas estas tareas sean manejadas por otros chips. Hay que agregarle los módulos de entrada y salida (puertos) y la memoria para almacenamiento de información.
Un microcontrolador típico tendrá un generador de reloj integrado y una pequeña cantidad de memoria de acceso aleatorio y/o ROM/EPROM/EEPROM/flash, con lo que para hacerlo funcionar todo lo que se necesita son unos pocos programas de control y un cristal de sincronización. Los microcontroladores disponen generalmente también de una gran variedad de dispositivos de entrada/salida, como convertidor analógico digital, temporizadores, UARTs y buses de interfaz serie especializados, como I2C y CAN. Frecuentemente, estos dispositivos integrados pueden ser controlados por instrucciones de procesadores especializados. Los modernos microcontroladores frecuentemente incluyen un lenguaje de programación integrado, como el lenguaje de programación BASIC que se utiliza bastante con este propósito.
Los microcontroladores negocian la velocidad y la flexibilidad para facilitar su uso. Debido a que se utiliza bastante sitio en el chip para incluir funcionalidad, como los dispositivos de entrada/salida o la memoria que incluye el microcontrolador, se ha de prescindir de cualquier otra circuitería.
· Arquitecturas

  Arquitectura Von Neumann
  
Utiliza el mismo dispositivo de almacenamiento tanto para las instrucciones como para los datos, siendo la que se utiliza en un ordenador personal porque permite ahorrar una buena cantidad de líneas de E/S, que son bastante costosas, sobre todo para aquellos sistemas donde el procesador se monta en algún tipo de zócalo alojado en una placa madre. También esta organización les ahorra a los diseñadores de placas madre una buena cantidad de problemas y reduce el costo de este tipo de sistemas.
En un ordenador personal, cuando se carga un programa en memoria, a éste se le asigna un espacio de direcciones de la memoria que se divide en segmentos, de los cuales típicamente tenderemos los siguientes: código (programa), datos y pila. Es por ello que podemos hablar de la memoria como un todo, aunque existan distintos dispositivos físicos en el sistema (disco duro, memoria RAM, memoria flash, unidad de disco óptico...).
En el caso de los microcontroladores, existen dos tipos de memoria bien definidas: memoria de datos (típicamente algún tipo de SRAM) y memoria de programas (ROM, PROM, EEPROM, flash u de otro tipo no volátil). En este caso la organización es distinta a las del ordenador personal, porque hay circuitos distintos para cada memoria y normalmente no se utilizan los registros de segmentos, sino que la memoria está segregada y el acceso a cada tipo de memoria depende de las instrucciones del procesador.
A pesar de que en los sistemas integrados con arquitectura Von Neumann la memoria esté segregada, y existan diferencias con respecto a la definición tradicional de esta arquitectura; los buses para acceder a ambos tipos de memoria son los mismos, del procesador solamente salen el bus de datos, el de direcciones, y el de control. Como conclusión, la arquitectura no ha sido alterada, porque la forma en que se conecta la memoria al procesador sigue el mismo principio definido en la arquitectura básica.
Algunas familias de microcontroladores como la Intel 8051 y la Z80 implementan este tipo de arquitectura, fundamentalmente porque era la utilizada cuando aparecieron los primeros microcontroladores.
 Arquitectura Harvard
  
La otra variante es la arquitectura Harvard, y por excelencia la utilizada en supercomputadoras, en los microcontroladores, y sistemas integrados en general. En este caso, además de la memoria, el procesador tiene los buses segregados, de modo que cada tipo de memoria tiene un bus de datos, uno de direcciones y uno de control.
La ventaja fundamental de esta arquitectura es que permite adecuar el tamaño de los buses a las características de cada tipo de memoria; además, el procesador puede acceder a cada una de ellas de forma simultánea, lo que se traduce en un aumento significativo de la velocidad de procesamiento. Típicamente los sistemas con esta arquitectura pueden ser dos veces más rápidos que sistemas similares con arquitectura Von Neumann.
La desventaja está en que consume muchas líneas de E/S del procesador; por lo que en sistemas donde el procesador está ubicado en su propio encapsulado, solo se utiliza en supercomputadoras. Sin embargo, en los microcontroladores y otros sistemas integrados, donde usualmente la memoria de datos y programas comparten el mismo encapsulado que el procesador, este inconveniente deja de ser un problema serio y es por ello que encontramos la arquitectura Harvard en la mayoría de los microcontroladores.
Por eso es importante recordar que un microcontrolador se puede configurar de diferentes maneras, siempre y cuando se respete el tamaño de memoria que este requiera para su correcto funcionamiento.


· Elementos
      
Registros
Son un espacio de memoria muy reducido pero necesario para cualquier microprocesador, de aquí se toman los datos para varias operaciones que debe realizar el resto de los circuitos del procesador. Los registros sirven para almacenar los resultados de la ejecución de instrucciones, cargar datos desde la memoria externa o almacenarlos en ella.
Aunque la importancia de los registros parezca trivial, no lo es en absoluto. De hecho una parte de los registros, la destinada a los datos, es la que determina uno de los parámetros más importantes de cualquier microprocesador. Cuando escuchamos que un procesador es de 4, 8, 16, 32 o 64 bits, nos estamos refiriendo a procesadores que realizan sus operaciones con registros de datos de ese tamaño, y por supuesto, esto determina muchas de las potencialidades de estas máquinas.
Mientras mayor sea el número de bits de los registros de datos del procesador, mayores serán sus prestaciones, en cuanto a poder de cómputo y velocidad de ejecución, ya que este parámetro determina la potencia que se puede incorporar al resto de los componentes del sistema, por ejemplo, no tiene sentido tener una ALU de 16 bits en un procesador de 8 bits.
Unidad de control
Esta unidad es de las más importantes en el procesador, en ella recae la lógica necesaria para la decodificación y ejecución de las instrucciones, el control de los registros, la ALU, los buses y cuanta cosa más se quiera meter en el procesador.
La unidad de control es uno de los elementos fundamentales que determinan las prestaciones del procesador, ya que su tipo y estructura determina parámetros tales como el tipo de conjunto de instrucciones, velocidad de ejecución, tiempo del ciclo de máquina, tipo de buses que puede tener el sistema, manejo de interrupciones y un buen número de cosas más que en cualquier procesador van a parar a este bloque.
Unidad aritmético-lógica (ALU)
Como los procesadores son circuitos que hacen básicamente operaciones lógicas y matemáticas, se le dedica a este proceso una unidad completa, con cierta independencia. Aquí es donde se realizan las sumas, restas, y operaciones lógicas típicas del álgebra de Boole.
Actualmente este tipo de unidades ha evolucionado mucho y los procesadores más modernos tienen varias ALU, especializadas en la realización de operaciones complejas como las operaciones en coma flotante. De hecho en muchos casos le han cambiado su nombre por el de “coprocesador matemático”, aunque este es un término que surgió para dar nombre a un tipo especial de procesador que se conecta directamente al procesador más tradicional.
Buses
Son el medio de comunicación que utilizan los diferentes componentes del procesador para intercambiar información entre sí, eventualmente los buses o una parte de ellos estarán reflejados en los pines del encapsulado del procesador.
En el caso de los microcontroladores, no es común que los buses estén reflejados en el encapsulado del circuito, ya que estos se destinan básicamente a las E/S de propósito general y periféricos del sistema.
Existen tres tipos de buses:
•   Dirección: Se utiliza para seleccionar al dispositivo con el cual se quiere trabajar o en el caso de las memorias, seleccionar el dato que se desea leer o escribir.
•   Datos: Se utiliza para mover los datos entre los dispositivos de hardware (entrada y salida).
•   Control: Se utiliza para gestionar los distintos procesos de escritura lectura y controlar la operación de los dispositivos del sistema.
Conjunto de instrucciones
Aunque no aparezca en el esquema, no podíamos dejar al conjunto o repertorio de instrucciones fuera de la explicación, porque este elemento determina lo que puede hacer el procesador.
Define las operaciones básicas que puede realizar el procesador, que conjugadas y organizadas forman lo que conocemos como software. El conjunto de instrucciones vienen siendo como las letras del alfabeto, el elemento básico del lenguaje, que organizadas adecuadamente permiten escribir palabras, oraciones y cuanto programa se le ocurra.
Existen dos tipos básicos de repertorios de instrucciones, que determinan la arquitectura del procesador: CISC y RISC.
· Memorias
En los microcontroladores la memoria de instrucciones y datos está integrada en el propio chip. Una parte debe ser no volátil, tipo ROM, y se destina a contener el programa de instrucciones que gobierna la aplicación. Otra parte de memoria será tipo RAM, volátil, y se destina a guardar las variables y los datos.
Hay dos peculiaridades que diferencian a los microcontroladores de los computadores personales:
No existen sistemas de almacenamiento masivo como disco duro o disquetes.
Como el microcontrolador sólo se destina a una tarea en la memoria ROM, sólo hay que almacenar un único programa de trabajo.
La RAM en estos dispositivos es de poca capacidad pues sólo debe contener las variables y los cambios de información que se produzcan en el transcurso del programa. Por otra parte, como sólo existe un programa activo, no se requiere guardar una copia del mismo en la RAM pues se ejecuta directamente desde la ROM.
Los usuarios de computadores personales están habituados a manejar Megabytes de memoria, pero, los diseñadores con microcontroladores trabajan con capacidades de ROM comprendidas entre 512 bytes y 8 k bytes y de RAM comprendidas entre 20 y 512 bytes.
Según el tipo de memoria ROM que dispongan los microcontroladores, la aplicación y utilización de los mismos es diferente. Se describen las cinco versiones de memoria no volátil que se pueden encontrar en los microcontroladores del mercado.
1º. ROM con máscara
Es una memoria no volátil de sólo lectura cuyo contenido se graba durante la fabricación del chip. El elevado coste del diseño de la máscara sólo hace aconsejable el empleo de los microcontroladores con este tipo de memoria cuando se precisan cantidades superiores a varios miles de unidades.
2ª. OTP
El microcontrolador contiene una memoria no volátil de sólo lectura "programable una sola vez" por el usuario. OTP (One Time Programmable). Es el usuario quien puede escribir el programa en el chip mediante un sencillo grabador controlado por un programa desde un PC.
La versión OTP es recomendable cuando es muy corto el ciclo de diseño del producto, o bien, en la construcción de prototipos y series muy pequeñas.
Tanto en este tipo de memoria como en la EPROM, se suele usar la encriptación mediante fusibles para proteger el código contenido.
3ª EPROM
Los microcontroladores que disponen de memoria EPROM (Erasable Programmable Read OnIy Memory) pueden borrarse y grabarse muchas veces. La grabación se realiza, como en el caso de los OTP, con un grabador gobernado desde un PC. Si, posteriormente, se desea borrar el contenido, disponen de una ventana de cristal en su superficie por la que se somete a la EPROM a rayos ultravioleta durante varios minutos. Las cápsulas son de material cerámico y son más caros que los microcontroladores con memoria OTP que están hechos con material plástico.
4ª EEPROM
Se trata de memorias de sólo lectura, programables y borrables eléctricamente EEPROM (Electrical Erasable Programmable Read OnIy Memory). Tanto la programación como el borrado, se realizan eléctricamente desde el propio grabador y bajo el control programado de un PC. Es muy cómoda y rápida la operación de grabado y la de borrado. No disponen de ventana de cristal en la superficie.
Los microcontroladores dotados de memoria EEPROM una vez instalados en el circuito, pueden grabarse y borrarse cuantas veces se quiera sin ser retirados de dicho circuito. Para ello se usan "grabadores en circuito" que confieren una gran flexibilidad y rapidez a la hora de realizar modificaciones en el programa de trabajo.
El número de veces que puede grabarse y borrarse una memoria EEPROM es finito, por lo que no es recomendable una reprogramación continua.
5ª FLASH
Se trata de una memoria no volátil, de bajo consumo, que se puede escribir y borrar. Funciona como una ROM y una RAM pero consume menos y es más pequeña.
A diferencia de la ROM, la memoria FLASH es programable en el circuito. Es más rápida y de mayor densidad que la EEPROM.
La alternativa FLASH está recomendada frente a la EEPROM cuando se precisa gran cantidad de memoria de programa no volátil. Es más veloz y tolera más ciclos de escritura/borrado.

· Interrupciones
Las interrupciones son esencialmente llamadas a subrutina generadas por los dispositivos físicos, al contrario de las subrutinas normales de un programa en ejecución. Como el salto de subrutina no es parte del hilo o secuencia de ejecución programada, el controlador guarda el estado del procesador en la pila de memoria y entra a ejecutar un código especial llamado "manejador de interrupciones" que atiende al periférico específico que generó la interrupción. Al terminar la rutina, una instrucción especial le indica al procesador el fin de la atención de la interrupción. En ese momento el controlador restablece el estado anterior, y el programa que se estaba ejecutando antes de la interrupción sigue como si nada hubiese pasado. Las rutinas de atención de interrupciones deben ser lo más breves posibles para que el rendimiento del sistema sea satisfactorio, porque normalmente cuando una interrupción es atendida, todas las demás interrupciones están en espera.
Los procesos de atención a interrupciones tienen la ventaja de que se implementan por hardware ubicado en el procesador, así que es un método rápido de hacer que el procesador se dedique a ejecutar un programa especial para atender eventos que no pueden esperar por mecanismos lentos como el de encuesta.
En términos generales, un proceso de interrupción y su atención por parte del procesador, tiene la siguiente secuencia de acciones:
1.  En el mundo real se produce el evento para el cual queremos que el procesador ejecute un programa especial, este proceso tiene la característica de que no puede esperar mucho tiempo antes de ser atendido o no sabemos en qué momento debe ser atendido.
2.  El circuito encargado de detectar la ocurrencia del evento se activa, y como consecuencia, activa la entrada de interrupción del procesador.
3.  La unidad de control detecta que se ha producido una interrupción y “levanta” una bandera para registrar esta situación; de esta forma si las condiciones que provocaron el evento desaparecen y el circuito encargado de detectarlo desactiva la entrada de interrupción del procesador, ésta se producirá de cualquier modo, porque ha sido registrada.
4.  La unidad de ejecución termina con la instrucción en curso y justo antes de comenzar a ejecutar la siguiente comprueba que se ha registrado una interrupción
5.  Se desencadena un proceso que permite guardar el estado actual del programa en ejecución y saltar a una dirección especial de memoria de programas, donde está la primera instrucción de la subrutina de atención a interrupción.
6.  Se ejecuta el código de atención a interrupción, esta es la parte “consciente” de todo el proceso porque es donde se realizan las acciones propias de la atención a la interrupción y el programador juega su papel.
7.  Cuando en la subrutina de atención a interrupción se ejecuta la instrucción de retorno, se desencadena el proceso de restauración del procesador al estado en que estaba antes de la atención a la interrupción.
´


2.    
RESUMEN
Un microcontrolador es un circuito integrado programable que incluye todos los componentes de un computador y el cual se emplea para controlar el funcionamiento de una tarea determinada y debido a su reducido tamaño, suele ir incorporado en el propio dispositivo que gobierna (es un controlador incrustado).   Los PIC controlan los teclados y ratones de las computadoras, los teléfonos, los hornos de microondas, los televisores, etc., de ahí que su extensa área de aplicación amerita que se aprenda a programar los mismos, objetivo fundamental de este curso.

3.    SUMMARY
A microcontroller is a programmable integrated circuit that includes all components of a computer and which is used to control the operation of a particular task and because of its small size, is usually built into the device itself that governs (is an embedded controller) . The PIC control keyboards and computer mice, telephones, microwave ovens, televisions, etc., hence its wide application area that warrants learn to program the same fundamental goal of this course.

4.    RECOMENDACIONES
v  Crear una lista de todas las interfaces externas que el microcontrolador tendrá que soportar.
v  Pensar en los requisitos de potencia de procesamiento que necesitará nuestro microcontrolador.
v  Seleccionar la arquitectura con la cual va a trabajar el microcontrolador.
v  A la hora de seleccionar un microcontrolador tener en cuenta  la cantidad de memoria programada (OTP o Flash) y la cantidad de RAM disponible.


5.    CONCLUSIONES
El microcontrolador es uno de los logros más sobresalientes del siglo XX. Hace un cuarto de siglo tal afirmación habría parecido absurda. Pero cada año, el microcontrolador se acerca más al centro de nuestras vidas, forjándose un sitio en el núcleo de una máquina tras otra. Su presencia ha comenzado a cambiar la forma en que percibimos el mundo e incluso a nosotros mismos. Cada vez se hace más difícil pasar por alto el microcontrolador como otro simple producto en una larga línea de innovaciones tecnológicas.
6.    APRECIACION DEL EQUIPO
Hoy en la actualidad los microcontroladores son muy utilizados en el aspecto tecnológico ya que ayudar a monitorear, circuiteria de control, para hacer pequeñas computadoras para robots y sistemas de adquisición de datos. Y son de tan bajo consumo de energía que se usan para monitorear signos vitales dentro del cuerpo.

7.    GLOSARIO DE TÉRMINOS
Kilohertz(KHz):El Kilohercio un kilohercio, o el Kilohercio, es una medida de frecuencia igual a 1,000 hercios.
CPU: Unidad central de proceso.
DSP: Procesador digital de señales.
ABS: Sistema que impide el bloqueo de las ruedas de un vehículo automóvil en una maniobra de frenado brusco.
ALU: Unidad aritmética lógica o unidad aritmético-lógica.
VOLÁTIL: Que cambia o varía con facilidad y de forma poco previsible.

8.    BIBLIOGRAFÍA O LINKOGRAFÍA

LINK DE DESCAGA SLIDESHARE:  Microcontrolador
























  

                                                                                          

1 comentario:

  1. Bien elaborada la PRESENTACION. Defina claramente las CONCLUSIONES y RECOMENDACIONES. Detalle la APRECIACION con sus propias palabras. Trabajo bien desarrollado y explicado. Proponga un foro de discusión sobre el tema.Gracias por su investigación.Saludos

    ResponderEliminar